Steric and Electronic Effects on ¹⁵N Chemical Shifts of Piperidine and Decahydroquinoline Hydrochlorides¹

Rudolf O. Duthaler and John D. Roberts*

Contribution No. 5647 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91125. Received August 12, 1977

Abstract: Natural-abundance ¹⁵N NMR chemical shifts of a number of closely related C- and N-methyl-substituted piperidine and decahydroquinoline hydrochlorides have been measured in chloroform and methanol. For each solvent, the ¹⁵N shifts of the salts of secondary and tertiary amines give different linear correlations with the ¹³C shifts of the corresponding carbons of their hydrocarbon analogues. Additive shift parameters as well as protonation-shift parameters for carbon substitution near nitrogen have been determined. Three of the nine parameters have a pronounced solvent dependence. The substituent-shift parameters for hydrochlorides are in general closer to the analogous values for ¹³C NMR than the corresponding parameters which correlate the ¹⁵N shifts of the free amines. The parameters for substitution on β carbons are an exception. The ¹³C shifts of some of the compounds can be used to elucidate conformational questions.

I. Introduction

In an earlier paper on the natural-abundance ¹⁵N spectra of piperidines and related compounds, it was shown that the nitrogen chemical shifts could be correlated with a set of additive substituent parameters.² Some of these parameters showed significant solvent dependences. Plots of the ¹⁵N shifts measured in the same solvent vs. the ¹³C shifts of ring carbons located in the same place as the nitrogens in corresponding cyclohexane compounds were quite linear for all the secondary amines and for two separate groups of *N*-methyl derivatives. The few tertiary amines which showed large deviations from the ¹⁵N/¹³C shift-correlation line had the common structural feature of carbon-carbon bonds oriented antiperiplanar to the nitrogen lone pair. The large shift effect connected with this stereoelectric arrangement was used to estimate the axial/ equatorial equilibrium of *N*-methylpiperidine.

The present study concerns the 15 N chemical shifts of the hydrochlorides of amines. If these shifts could be correlated with additive substituent parameters, further information on the structures of saturated amines might be derived by measuring the changes in shift produced by protonation. Still further insight might be gained from comparison of the 15 N/ 13 C shift correlations of the amines² and the amine salts with the 13 C shifts of cyclohexanes, because effects due to the size or delocalization of the lone pair either should be expected to disappear or become smaller by protonation. It was also of interest to determine the possible influences of the positive charge and shift effects due to the solvent, concentration of solute, and the counterion.

II. Experimental Section

Nitrogen-15 chemical shifts were determined with a Bruker WH-180 FT NMR spectrometer operating at 18.25 MHz. The concentrations of the amine hydrochloride solutions were $9 \pm 1 \mod \%$ in chloroform, 4.5 ± 0.5 mol % in absolute methanol, and 7.5 ± 0.5 mol % in a mixture of 82 mol % chloroform and 18 mol-% methanol. The shifts are reported in parts per million upfield from external ¹⁵N-enriched 1 M nitric acid in D₂O. The values which are accurate to about 0.2 ppm are not corrected for bulk susceptibility effects. The reference was made by dilution of 44% H¹⁵NO₃ (99 atom %) with D₂O to 1 M. The reproducibility of the shift of such solutions is within 0.15 ppm. All shifts of this study are measured with identical references. The bulk susceptibility, K^{ν} , of 1 M nitric acid is -0.715 ± 0.005 $\times 10^{-6}$. The shift of 1 M nitric acid not corrected for bulk susceptibility is 6.2 ppm upfield from neat nitromethane, 298.7 ppm downfield from urea (2 M in H₂O), 332.8 ppm downfield from tetramethylammonium chloride (2 M in H₂O), and 355.0 ppm downfield from the ammonium resonance of ammonium nitrate (2 M ln H₂O).

For a reasonable signal-to-noise ratio, it was necessary to accumulate 500-1000 pulses $(25^{\circ}/20 \ \mu s)$ with repetition rates between

2 and 5 s. In some cases, much longer accumulation times (up to 21 h) were needed to detect the signals of amine salt epimers present in low concentration. The base-catalyzed nitrogen epimerization was found to be slow enough in both solvents to observe separate sharp signals for diastereomeric salts. The proton-noise decoupling of hydrochloride solutions turned out to be rather difficult, because a high portion of the decoupling power is reflected when the dielectric constant of the sample is increased. Efficient decoupling of both the deshielded ammonium protons and the protons on α carbons was therefore not always possible. The resulting broadening of the signals (up to 20 Hz) in some instances precluded the observation of isomers with low concentrations. Because of the high decoupling power needed (5 W), the sample was kept near ambient temperatures by blowing cold nitrogen (0 °C) through the probe.

Peak assignments for mixtures of isomers were made by utilizing the intensity ratios of the signals or, when these were close to 1:1, by comparison with the spectrum of one pure isomer.

¹³C NMR spectra were measured of chloroform solutions with a Varian XL-100 spectrometer, and proton spectra on a Varian A-60A instrument.

The crystalline hydrochlorides were prepared by passing dry hydrogen chloride into solutions of the amines in anhydrous ether. The salts were collected by filtration, washed with ether, and dried under reduced pressure. The preparation of the amines was described previously.² Mixtures of *N*-methyl-*cis*- and *N*-methyl-*trans*-3,5-dimethylpiperidine (**7b**, **8b**), and *N*-methyl-*cis*- and *N*-methyl-*trans*-2,6-dimethylpiperidine (**5b**, **6b**), were separated by chromatography on alumina.³ Better separations were obtained using alumina (neutral, activity 1, Woelm) and eluting first with petroleum ether (bp 35-60°C) and then with petroleum ether/ether mixtures, increasing the amount of ether in 4 vol % steps, rather than just eluting with ether.

III. Results and Discussion

The ¹⁵N chemical shifts of the hydrochlorides of various methylpiperidines, decahydroquinolines, and related compounds measured in chloroform and methanol are given in Table I along with the protonation shifts in methanol. Because some of the secondary salts were not very soluble in chloroform, their ¹⁵N shifts were also measured in a mixture of 82 mol % chloroform and 18 mol % methanol. Plots of the ¹⁵N shifts vs. the corresponding ¹³C shifts are shown in Figures 1 (CHCl₃), 2 (CH₃OH), and 3 (CHCl₃/CH₃OH). In each case, separate linear correlations are found for the secondary and the tertiary salts. The slopes, intercepts, and correlation coefficients of the least-squares lines are listed in Table II. Table III gives the carbon shifts of the corresponding carbons of the analogous cyclohexanes⁴ and the deviations on the nitrogen scale from the $^{15}N/^{13}C$ -correlation line for both the salts and the free bases² measured in different solvents.

It has already been shown that there are quite distinctly

Figure 1. Correlation of ${}^{15}N/{}^{13}C$ NMR chemical shifts of secondary amine hydrochlorides, \Box , and tertiary amine hydrochlorides, Θ , in chloroform solution.

different intercepts, but similar slopes (for a given solvent), of the $^{15}N/^{13}C$ -shift correlations for the secondary and tertiary piperidines themselves, and one possible reason for this could be the nitrogen lone pair which is expected to produce a large contribution to the paramagnetic shift term. Different mean radii for the lone pairs of secondary and tertiary amines would affect the nitrogen shifts through the $1/r^3$ term of the shielding equation.^{5,6} If the condition of the lone pairs were the only difference between secondary and tertiary amines, hydrogen bonding or protonation might be expected to diminish the differences between the correlation lines. This is, in fact, observed, and separations between the correlation lines of secondary and tertiary amines (12.5 ppm for a carbon shift of 37 ppm) shrink to 8.5 ppm on going from cyclohexane to methanol as solvent, and are only 5.5 ppm for the hydrochlorides in chloroform and 3.5 ppm for the hydrochlorides in methanol. A very important shift effect, which is evident only for tertiary amines, appears to involve delocalization of the lone pair to antiperiplanar $C(\alpha)H$ bonds.² If this effect were absent, the separation of the ${}^{15}N/{}^{13}C$ shift correlation lines of secondary and tertiary amines would be much larger than 12.5 ppm, as can be seen from the large deviations of those tertiary amines which are stereochemically constrained or otherwise constructed not to have antiperiplanar protons (see Table III). Protonation cancels the antiperiplanar effect and the ¹⁵N shifts of the hydrochlorides of the deviant amines correlate well with the other tertiary salts; examples are N.(trans-2,6)-trimethylpiperidine (6b), N,2,2,6,6-pentamethylpiperidine (13b), N-methyl-2-azaadamantane (14b), N-isopropylpiperidine (20), and quinuclidine (22) (Table III).

The influence of protonation on the ¹⁵N shifts is the net of cancellation of effects due to the nitrogen lone pair in the amine, and of new effects connected with introduction of positive charge and an additional N-H bond in the salts. The downfield shifts observed on protonation of most of the compounds studied suggest reduced electron shielding with formation of positively charged nitrogen. Some of the positive charge will be expected to be delocalized to the close-by carbons and hydrogens as well. In this connection, CNDO/2calculations by Morishima and co-workers7 indicate that, in amine salts, the positive charge formed on nitrogen is spread over the C-H hydrogens, primarily those on the α and β carbons, while the electron densities on the carbon atoms remain constant or even increase. Such a charge redistribution is in qualitative agreement with the observed deshielding of the proton resonances and the shielding of most carbon shifts on protonation of a saturated amine.^{7,8} Furthermore, substitution of the C-H hydrogens by carbons is found to reverse the pro-

Figure 2. Correlation of ${}^{15}N/{}^{13}C$ NMR chemical shifts of secondary amine hydrochlorides, \Box , and tertiary amine hydrochlorides, Θ , in methanol solutions.

Figure 3. Correlation of ¹⁵N/¹⁵C NMR chemical shifts of secondary amine hydrochlorides in chloroform/methanol (82:18) solution.

tonation effect on the α carbons from the upfield direction to the downfield direction and also attenuates the large shielding effect of β carbons. Structural effects on the ¹⁵N protonation shifts are not wholly consistent with the postulated bond polarizations. Thus, substitution of hydrogens on α carbons by methyl groups decreases the deshielding protonation effect on the ¹⁵N resonances and eventually produces a shielding effect, e.g, cis-2,6-dimethylpiperidine (5a) (Table I). However, increased deshielding on protonation is observed when methyl groups are substituted for hydrogens on β carbons, and this effect is responsible for the rather large deviations from the $^{15}N/^{13}C$ shift correlations observed for hydrochlorides with gauche γ carbons. This effect is more pronounced for the hydrochlorides derived from tertiary amines than for those from secondary amines. Examples include N.(trans-3,5)-trimethylpiperidine (8b), - 4.4 ppm; N,3,3-trimethylpiperidine (11b), - 3.3 ppm; N-methyl-cis-decahydroquinoline (16b, N-inside isomer), -5.0 ppm; and N-methyl-8-(e)-methyl*trans*-decahydroquinoline (17b), - 6.9 ppm (Table III and Figures 1 and 2). The attenuation of the ¹⁵N protonation shift by β carbons causes the β parameter for hydrochlorides to be smaller than that for free amines (see below), and is responsible for the fact that the slopes of the $^{15}N/^{13}C$ shift-correlation lines are closer to unity for the salts than for the free bases (Table 11). Possible reasons for the protonation shifts of tertiary amines being larger than the protonation shifts of secondary amines were mentioned above in connection with the separation of the correlation lines. Although the ¹⁵N chemical shifts

Table I. ¹⁵	N Chemical	Shifts of Amine	Hydrochlorides
------------------------	------------	-----------------	----------------

Piperdine Ia Chick (CH)(OH 2 (Moli)	Amine		Solvent ⁴	Concreb	lsomer¢	δ15N d	 λδ(H+)e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diperidine	1		7.0	13011101	221.2	<u>av(11.)</u> .
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Piperidine	la		7.0		331.3	- 2 2
$ \begin{array}{c} \mbod limit limi$	2-Methylpiperidine	29		9.2		317.9	-2.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CHCl ₃ /CH ₃ OH	8.4		318.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CH ₃ OH	4.0		322.1	+1.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-Methylpiperidine	3a	CHCl ₃	7.7		328.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CHCl ₃ /CH ₃ OH	7.1		329.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CH ₃ OH	4.0		333.8	-3.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Methylpiperidine	4 a	CHCl ₃	6.5		329.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 7.7		331.2	- 28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-2 6-Dimethylniperidine	59		4.0 7 9		307.3	-2.8
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		<u>J</u>	CH ₃ OH	4.5		308.4	+4.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	trans-2,6-Dimethylpiperidine	6a	CHCl ₃ /CH ₃ OH	7.9		311.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CH ₃ OH	4.5		313.0	+1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-3,5-Dimethylpiperidine	7a	CHCl ₃	7.7		327.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			CHCl ₃ /CH ₃ OH	7.3		328.3	
		0	CH ₃ OH	4.0		332.1	-4.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	irans-3,5-Dimethylpiperidine	8a		1.1		333.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				7.3		334.4	-87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-2 3-Dimethylnineridine	Qa	CHCh	4.0		320.7	0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	trs-2,5-Dimetriyipiperiame	Ja		83		322.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			СНаОН	4.8		325.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-2,3-Dimethylpiperidine	10a	CHCl ₃	9.3		316.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CHCl ₃ /CH ₃ OH	8.5		318.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CH3OH	4.8		320.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,3-Dimethylpiperidine	11a	CHCl ₃	8.6		331.3	
4.4-Dimethylpiperidine 12a CH,OH 4.3 33.6 -6.6 2.2,6,6-Tetramethylpiperidine 13a CH,OH 6.4 334.3 -3.9 2.2,6,6-Tetramethylpiperidine 13a CHCl ₃ /CH ₃ OH 6.4 334.3 -3.9 2.2,6,6-Tetramethylpiperidine 13a CHCl ₃ /CH ₃ OH 7.4 20.6 20.7 2.2,2,6,6-Tetramethylpiperidine 14a CHCl ₃ /CH ₃ OH 7.9 319.6 -1.4.3.5 2Azaadamantane 14a CHCl ₃ /CH ₃ OH 7.9 319.6 -1.4.3.5 2Azaadamantane 14a CHCl ₃ /CH ₃ OH 7.9 319.6 -1.4.3.5 c/h,OH 4.5 322.5 -2.6 -2.6 -2.6 c/h,OH 4.5 325.0 -2.6 -2.6 -2.6 Pyrrolidine 17a CH ₃ OH 7.5 326.0 -2.6 -2.6 N-Aethylpiperidine 1b CHCl ₃ 7.7 327.2 -9.1 N_2-Dimethylpiperidine 2b CHCl ₃ 8.6 Trans 319.4 CH ₃ OH 4.0 Cis 327.8			CHCl ₃ /CH ₃ OH	7.7		332.5	
4.4-Dimensipipperatine 12a CH ₁ GH 6.4 330.0 2.2.6,6-Tetramethylpiperidine 13a CH ₁ OH 6.4 295.6 2.2.6,6-Tetramethylpiperidine 13a CH ₂ OH 7.6 295.6 2.Azaadamantane 14a CH ₂ OH 4.4 296.1 +3.5 2.Azaadamantane 14a CH ₂ OH 7.6 295.6 - trans-Decahydroquinoline 15a CH ₂ OH 7.9 319.7 +2.4 cis-Decahydroquinoline 15a CH ₂ OH 7.9 322.5 - cis-Decahydroquinoline 17a CH ₂ OH 7.9 322.2 - byrrolidine 17a CH ₂ OH 5.5 326.0 - pyrrolidine 18a CH ₂ OH 5.7 327.2 -9.1 N-Methylpiperidine 1b CH ₁ OH 4.0 329.1 -5.3 N_2-Dimethylpiperidine 2b CHCl ₃ 8.6 Trans 319.4 CIs 325.5 N_3-0 CH ₃ OH 5.1 Trans 319.7 -5.3 -5.3 -5.3 <t< td=""><td>A A Disectly later at the</td><td>12.</td><td>CH₃OH</td><td>4.3</td><td></td><td>337.6</td><td>-6.6</td></t<>	A A Disectly later at the	12.	CH ₃ OH	4.3		337.6	-6.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,4-Dimetnyipiperiaine	12a		6.4		234.2	_2 0
$\begin{array}{c c} \mbox{CHigh CHigh High High 2} \\ \mbox{CHigh CHigh 4} \\ \mbox{CHigh 4} \\ \mbox{CHigh 4} \\ \mbox{CHigh 4} \\ \mbox{2} \\ \mbox$	2.2.6.6.Tetramethylnineridine	130		7.6		205.6	-3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2,0,0° retrainentyipiperidine	138	CH ₂ OH	44		295.0	+35
CHCl ₃ / CHCl ₃ /CH ₃ OH 7.9 319.6 trans-Decahydroquinoline 15a CHCl ₃ /CH ₃ OH 7.9 322.5 cis-Decahydroquinoline 16a CHCl ₃ /CH ₃ OH 7.9 325.0 8-(e)-Methyl-trans-decahydroquinoline 17a CH ₃ OH 5.5 326.0 Pyrrolidine 17a CH ₃ OH 5.5 326.0 Pyrrolidine 18a CHCl ₃ 10.7 322.2 N-Methylpiperidine 1b CHCl ₃ 7.7 327.9 CH ₃ OH 4.0 329.1 -5.3 324.7 CH ₃ OH 5.1 Trans 319.7 -5.3 N_2-Dimethylpiperidine 2b CHCl ₃ 9.7 Cis 326.5 N_3-Dimethylpiperidine 3b CHCl ₃ 9.7 Cis 327.8 -6.6 N_4-Dimethylpiperidine 4b CHCl ₃ 9.7 Trans 327.8 -6.6 N_4/cis-2,6)-Trimethylpiperidine 5b CHCl ₃ 8.7 NCH ₃ eq 311.4 NCH ₃ eq	2-Azaadamantane	14a	CH ₃ OH/	4.9		319.7	+2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CHCl ₃ f				
$\begin{array}{c c} CH_{3}OH & 4.5 & 322.5 \\ c/s-Decahydroquinoline & 16a & CHCl_{3}/CH_{3}OH & 7.9 & 325.0 \\ CHCl_{3}/CH_{3}OH & 4.5 & 328.5 \\ 326.0 & 328.5 & 326.0 \\ 327.0 & CHCl_{3}OH & 5.5 & 326.0 \\ 770 & 18a & CHCl_{3} & 10.7 & 322.2 \\ CH_{3}OH & 5.7 & 327.2 & -9.1 \\ 18a & CHCl_{3} & 10.7 & 327.9 \\ CH_{3}OH & 5.7 & 327.9 & -5.3 \\ CH_{3}OH & 4.0 & 329.1 & -5.3 \\ 0.160 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 \\ 0.160 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 \\ 0.160 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 \\ 0.160 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 \\ 0.160 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & $	trans-Decahydroquinoline	15a	CHCl ₃ /CH ₃ OH	7.9		319.6	
is-becahydroquinoline 16a CHCl ₃ /CH ₃ OH 7.9 325.0 8-(e)-Methyl-trans-decahydroquinoline 17a CH ₃ OH 5.5 326.0 Pyrrolidine 17a CH ₃ OH 5.5 326.0 Pyrrolidine 18a CHCl ₃ 10.7 322.2 N-Methylpiperidine 1b CHCl ₃ 7.7 327.2 -9.1 N-Methylpiperidine 2b CHCl ₃ 7.7 327.9 -5.3 N,2-Dimethylpiperidine 2b CHCl ₃ 8.6 Trans 319.4 CH ₃ OH 5.1 Trans 319.7 -3.4 Cis 325.9 CH ₃ OH 4.0 Cis 324.7 N,3-Dimethylpiperidine 3b CHCl ₃ 9.7 Cis 326.5 N,4-Dimethylpiperidine 4b CHCl ₃ 9.7 Trans 331.9 N,(cis-2,6)-Trimethylpiperidine 4b CHCl ₃ 9.7 Trans 327.8 -6.6 N,(cis-3,5)-Trimethylpiperidine 5b CHCl ₃ 9.7 Trans 327.8 -6.6 N,(cis-3,5)-Trimethylpiperidine <td></td> <td></td> <td>CH3OH</td> <td>4.5</td> <td></td> <td>322.5</td> <td></td>			CH3OH	4.5		322.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-Decahydroquinoline	16a	CHCl ₃ /CH ₃ OH	7.9		325.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CH3OH	4.5		328.5	
Pyrrolidine 18a CHCl ₃ 10.7 322.2 CH ₃ OH 5.7 327.2 -9.1 N-Methylpiperidine 1b CHCl ₃ 7.7 327.2 -9.1 N.2-Dimethylpiperidine 2b CHCl ₃ 7.7 327.2 -5.3 N.2-Dimethylpiperidine 2b CHCl ₃ 8.6 Trans 319.4 N.3-Dimethylpiperidine 3b CHCl ₃ 9.7 Cis 326.5 N.3-Dimethylpiperidine 3b CHCl ₃ 9.7 Cis 326.5 N.4-Dimethylpiperidine 4b CHCl ₃ 9.7 Trans 331.9 N.4-Dimethylpiperidine 4b CHCl ₃ 9.7 Trans 327.8 -6.6 N,(cls-2,6)-Trimethylpiperidine 5b CHCl ₃ 9.7 Trans 327.8 -6.6 N,(trans-2,6)-Trimethylpiperidine 5b CHCl ₃ 8.7 NCH ₄ ax 318.1 N,(trans-2,6)-Trimethylpiperidine 7b CH ₃ OH 4.5 NCH ₃ ax 316.0 -9.5 N,(cis-3,5)-Trimethylpiperidine 7b CDCl ₃ 8.9 <	8-(e)-Methyl-trans-decahydroquinoline	17a	CH3OH	5.5		326.0	
N-Methylpiperidine1b CH_3OH 5.7 327.2 -9.1 N-Methylpiperidine1b CH_3OH 4.0 329.1 -5.3 N,2-Dimethylpiperidine2b $CHCl_3$ 8.6Trans 319.4 Cis 322.7 CH_3OH 5.1Trans 319.7 N,3-Dimethylpiperidine3b $CHCl_3$ 9.7Cis 326.5 Trans 319.7 -3.4 Cis 327.8 -6.6 N,4-Dimethylpiperidine4b $CHCl_3$ 9.7Trans 327.8 CH_3OH4.0Cis 327.8 -6.6 N,4-Dimethylpiperidine4b $CHCl_3$ 9.7Trans 322.7 N,(cis-2,6)-Trimethylpiperidine5b $CHCl_3$ 8.7 NCH_3 eq 311.4 N,(trans-2,6)-Trimethylpiperidine7b $CDCl_3$ 8.9 NCH_3 eq 310.4 N,(trans-3,5)-Trimethylpiperidine7b $CDCl_3$ 8.9 NCH_3 eq 327.8 N,(cis-3,5)-Trimethylpiperidine9b $CHCl_3$ 9.0 327.8 -9.5 N,(cis-2,3)-Trimethylpiperidine7b $CDCl_3$ 8.9 NCH_3 eq 327.4 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 9.0 325.7 -7.1 N,(cis-2,3)-Trimethylpiperidine7b $CDCl_3$ 8.9 NCH_3 eq 327.4 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 8.1 Cis/cis 321.1 -7.1 N,(cis-2,3)-Trimethylpiperidine CH_3OH 4.6 Cis/cis <td< td=""><td>Pyrrolidine</td><td>18a</td><td>CHCl₃</td><td>10.7</td><td></td><td>322.2</td><td>0.1</td></td<>	Pyrrolidine	18a	CHCl ₃	10.7		322.2	0.1
N-Methylpiperidine Ib CH20 CH30H 7.7 (H30H) 327.9 (H30H) N,2-Dimethylpiperidine 2b CHC13 8.6 Trans 319.4 N,3-Dimethylpiperidine 2b CH30H 5.1 Trans 319.4 N,3-Dimethylpiperidine 3b CHC13 9.7 Cis 326.5 N,3-Dimethylpiperidine 4b CH23 9.7 Trans 332.7 N,4-Dimethylpiperidine 4b CHC13 9.7 Trans 327.8 N,4-Dimethylpiperidine 4b CHC13 9.7 Trans 322.7.8 N,(cis-2,6)-Trimethylpiperidine 5b CHC13 8.7 NCH3 eq 311.4 N,(cis-2,6)-Trimethylpiperidine 6b CHC13 8.7 NCH3 eq 316.5 N,(cis-3,5)-Trimethylpiperidine 7b CDC13 8.9 NCH3 eq 325.7 N,(cis-3,5)-Trimethylpiperidine 7b CDC13 8.9 NCH3 eq 325.7 N,(cis-3,5)-Trimethylpiperidine 7b CDC13 8.9 NCH3 eq 325.7 N,(cis-2,3)-Trimethylpiperidine 7b CDC13			CH ₃ OH	5.7		327.2	-9.1
N,2-Dimethylpiperidine2b CH_3OH 4.0 329.1 -5.3 N,2-Dimethylpiperidine2b $CHCl_3$ 8.6Trans 319.4 CH_3OH5.1Trans 319.7 -3.4 Cis 325.9 $CHCl_3$ 9.7Cis 326.5 N,3-Dimethylpiperidine3b $CHCl_3$ 9.7Cis 327.8 N,4-Dimethylpiperidine4b $CHCl_3$ 9.7Trans 327.8 N,4-Dimethylpiperidine4b $CHCl_3$ 9.7Trans 327.8 N,(cis-2,6)-Trimethylpiperidine5b $CHCl_3$ 8.7 $NCH_3 eq$ 311.4 N,(cis-2,6)-Trimethylpiperidine6b $CHCl_3$ 9.0 316.5 N,(trans-2,6)-Trimethylpiperidine7b $CDCl_3$ 8.9 $NCH_3 eq$ 310.4 N,(cis-3,5)-Trimethylpiperidine7b $CDCl_3$ 8.9 $NCH_3 eq$ 327.1 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 9.0 322.7 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 9.0 322.7 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 9.0 322.7 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 9.1 Cis/cis 321.1 -7.1 Trans/cis 324.38 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1 N,(cis-2,3)-Trimethylpiperidine9b $CHCl_3$ 8.1 Cis/cis 321.1 -7.1 Trans/cis 324.38 -7.5	N-Methylpiperidine	16	CHCl ₃	7.7		327.9	<u> </u>
N,2-Dimethylpiperidine Zb CHCl3 8.6 I rans 319.4 Cis 324.7 Cis 324.7 N,3-Dimethylpiperidine 3b CHCl3 9.7 Cis 326.5 Trans 311.9 CH ₃ OH 4.0 Cis 327.8 N,4-Dimethylpiperidine 4b CHCl3 9.7 Trans 331.9 N,4-Dimethylpiperidine 4b CHCl3 9.7 Trans 327.8 Ch3OH 4.2 Trans 329.0 -5.6 N,(cis-2,6)-Trimethylpiperidine 5b CHCl3 8.7 NCH ₃ eq 310.4 -0.6 N,(cis-3,5)-Trimethylpiperidine 6b CHCl3 9.0 316.5 -5.5 N,(cis-3,5)-Trimethylpiperidine 7b CDCl3 8.9 NCH ₃ eq 316.0 -9.5 N,(cis-3,5)-Trimethylpiperidine 7b CDCl3 8.9 NCH ₃ eq 325.7 N,(cis-2,3)-Trimethylpiperidine 8b CHCl3 9.0 325.7 -7.1 N,(cis-2,3)-Trimethylpiperidine 9b CHGl3 8.1 Cis/cis 321.1			CH ₃ OH	4.0		329.1	-5.3
$\begin{array}{cccc} Clis & 324.7 \\ CH_{3}OH & 5.1 & Trans & 319.7 & -3.4 \\ Cis & 325.9 & \\ CH_{3}OH & 5.1 & Cis & 326.5 \\ Trans & 331.9 & \\ CH_{3}OH & 4.0 & Cis & 327.8 & \\ CH_{3}OH & 4.0 & Cis & 327.8 & \\ Cis & 330.2 & \\ CH_{3}OH & 4.2 & Trans & 327.8 & \\ Cis & 330.2 & \\ CH_{3}OH & 4.2 & Trans & 329.0 & -5.6 & \\ N,(cis-2,6)-Trimethylpiperidine & 5b & CHCl_{3} & 8.7 & NCH_{3}eq & 311.4 & \\ N(CH_{3}ax & 318.1 & \\ CH_{3}OH & 4.3 & NCH_{3}eq & 310.4 & -0.6 & \\ N,(cis-3,5)-Trimethylpiperidine & 7b & CDCl_{3} & 8.9 & NCH_{3}eq & 325.7 & \\ N,(cis-3,5)-Trimethylpiperidine & 7b & CDCl_{3} & 8.9 & NCH_{3}eq & 325.7 & \\ N,(cis-3,5)-Trimethylpiperidine & 8b & CHCl_{3} & 9.0 & 316.5 & \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 9.0 & 329.7 & -7.1 & \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 8.1 & Cis/cis & 321.1 & \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 8.1 & Cis/cis & 321.4 & \\ CH_{3}OH & 4.6 & NCH_{3}eq & 325.7 & \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 8.1 & Cis/cis & 321.4 & \\ CH_{3}OH & 4.6 & NCH_{3}eq & 327.4 & -7.1 & \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 8.1 & Cis/cis & 321.4 & \\ CH_{3}OH & 4.7 & Cis/cis & 324.38 & \\ CH_{3}OH & 4.7 & Cis/cis & 324.78 & \\ \end{array}$	N,2-Dimethylpiperidine	26	CHCl ₃	8.6	Trans	319.4	
N,3-Dimethylpiperidine3bCHCl39.7Cis325.9N,3-Dimethylpiperidine3bCHCl39.7Cis326.5Trans331.9CH3OH4.0Cis327.8-6.6N,4-Dimethylpiperidine4bCHCl39.7Trans327.8-6.6N,4-Dimethylpiperidine4bCHCl39.7Trans329.0-5.6N,(cis-2,6)-Trimethylpiperidine5bCHCl38.7NCH3 eq311.4CH3OH4.5NCH3 eq310.4-0.6NCH3 ax318.1CH3OH4.5NCH3 eq316.0-9.5-9.5N,(trans-2,6)-Trimethylpiperidine6bCHCl39.0316.5N,(cis-3,5)-Trimethylpiperidine7bCDCl38.9NCH3 eq325.7N,(trans-3,5)-Trimethylpiperidine8bCHCl39.0329.7N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.1N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.1N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.1CH3OH4.632.8-8.9NCH3 eq324.38N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.1CH3OH4.7Cis/cis321.9Trans/cis324.38CH3OH4.7Cis/cis324.78Trans/cis324.78				5 1	Cis	324.7	2.4
N,3-Dimethylpiperidine 3b CHCl ₃ 9.7 Cis 326.5 Trans 331.9 CH ₃ OH 4.0 Cis 327.8 -6.6 N,4-Dimethylpiperidine 4b CHCl ₃ 9.7 Trans 329.0 -5.6 N,(cis-2,6)-Trimethylpiperidine 5b CHCl ₃ 9.7 NCH ₃ eq 311.4 N,(cis-2,6)-Trimethylpiperidine 6b CHCl ₃ 8.7 NCH ₃ eq 316.5 N,(trans-2,6)-Trimethylpiperidine 6b CHCl ₃ 9.0 316.5 -0.6 N,(cis-3,5)-Trimethylpiperidine 7b CDCl ₃ 8.9 NCH ₃ eq 325.7 N,(cis-3,5)-Trimethylpiperidine 7b CDCl ₃ 8.9 NCH ₃ eq 325.7 N, (trans-3,5)-Trimethylpiperidine 7b CDCl ₃ 8.9 NCH ₃ eq 325.7 N, (cis-2,3)-Trimethylpiperidine 9.0 325.7 -7.1 -7.1 N, (cis-2,3)-Trimethylpiperidine 7b CH ₃ OH 4.6 322.8 -8.9 N, (cis-2,3)-Trimethylpiperidine 9b CHCl ₃ 8.1 Cis/cis 321.1 <			СПЗОП	5.1	Cis	375 0	-3,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N 2 Dissected an addition	26	CUCI	07	Cia	220.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ry, 5-Dimensylphenume	30	CHCB	7./	CIS Tranc	220.3	
N,4-Dimethylpiperidine4bCH39.7Trans327.8 Cis330.2N,(cis-2,6)-Trimethylpiperidine5bCHCl39.7Trans329.0-5.6N,(cis-2,6)-Trimethylpiperidine5bCHCl38.7NCH3 eq311.4 NCH3 eq318.1CH3OH4.5NCH3 eq310.4-0.6 NCH3 ax317.9N,(trans-2,6)-Trimethylpiperidine6bCHCl39.0316.5 CH3OH316.0N,(cis-3,5)-Trimethylpiperidine7bCDCl38.9NCH3 eq325.7 NCH3 axN,(trans-3,5)-Trimethylpiperidine8bCHCl39.0329.7 NCH3 ax-7.1N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.4 CI3N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.4 CI3N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.4 CI3N,(cis-2,3)-Trimethylpiperidine9bCHCl38.1Cis/cis321.4 CI3CH3OH4.6X1.78X1.78 X1.78X1.78 X1.78X1.78 X1.78			СН-ОН	4 0	Cis	331.9	-6.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N 4-Dimethylpiperidine	<i>4</i> h	CHCL	9.0	Trans	277 8	0.0
$\begin{array}{cccc} CH_{3}OH & 4.2 & Trans & 329.0 & -5.6 \\ N,(cis-2,6)-Trimethylpiperidine & 5b & CHCl_{3} & 8.7 & NCH_{3} eq & 311.4 \\ NCH_{3} ax & 318.1 & \\ CH_{3}OH & 4.5 & NCH_{3} eq & 310.4 & -0.6 \\ NCH_{3} ax & 317.9 & \\ N,(cis-2,5)-Trimethylpiperidine & 6b & CHCl_{3} & 9.0 & 316.5 \\ CH_{3}OH & 4.3 & 316.0 & -9.5 \\ N,(cis-3,5)-Trimethylpiperidine & 7b & CDCl_{3} & 8.9 & NCH_{3} eq & 325.7 \\ N,(cis-3,5)-Trimethylpiperidine & 7b & CDCl_{3} & 8.9 & NCH_{3} eq & 325.7 \\ N,(cis-2,3)-Trimethylpiperidine & 8b & CHCl_{3} & 9.0 & 329.7 \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 9.0 & 329.7 \\ N,(cis-2,3)-Trimethylpiperidine & 9b & CHCl_{3} & 8.1 & Cis/cis & 321.1 \\ Trans/cis & 324.38 & \\ CH_{3}OH & 4.7 & Cis/cis & 321.9 \\ Trans/cis & 324.78 & \\ \end{array}$; •, +- Dimemyipipenume	9 0	CHCI3	2.1	Cis	330.2	
$N_{1}(cis-2,6)$ -Trimethylpiperidine5b $CHCl_{3}$ 8.7 NCH_{3} eq NCH_{3} ax 318.1 $CH_{3}OH$ 4.5 NCH_{3} eq NCH_{3} ax 316.5 NCH_{3} ax 317.9 $N_{1}(trans-2,6)$ -Trimethylpiperidine6b $CHCl_{3}$ $CH_{3}OH$ 9.0 4.3 316.5 $CH_{3}OH$ $N_{1}(cis-3,5)$ -Trimethylpiperidine7b $CDCl_{3}$ $CH_{3}OH$ 8.9 NCH_{3} eq 325.7 NCH_{3} ax 330.4 $N_{1}(trans-3,5)$ -Trimethylpiperidine8b $CHCl_{3}$ $CH_{3}OH$ 9.0 4.6 322.7 329.7 $CH_{3}OH$ $N_{1}(cis-2,3)$ -Trimethylpiperidine9b $CHCl_{3}$ $H_{3}OH$ 8.1 Cis/cis 321.1 $Trans/cis$ 324.3^{8} $N_{1}(cis-2,3)$ -Trimethylpiperidine $9b$ $CHCl_{3}$ $H_{3}OH$ 8.1 Cis/cis 321.1 $Trans/cis$ 324.3^{8}			CH ₃ OH	4.2	Trans	329.0	-5.6
$\begin{array}{c} \text{CH}_{3}(\text{cis}\ 2,6) \text{ Trimethylpiperidine} \\ \text{N}_{1}(\text{cis}\ 2,6) \text{ Trimethylpiperidine} \\ \text{N}_{2}(\text{trans-2,6}) \text{-} \text{Trimethylpiperidine} \\ \text{N}_{2}(\text{trans-2,6}) \text{-} \text{Trimethylpiperidine} \\ \text{N}_{2}(\text{trans-2,6}) \text{-} \text{Trimethylpiperidine} \\ \text{N}_{2}(\text{cis}\ 3,5) \text{-} \text{Trimethylpiperidine} \\ \text{N}_{2}(\text{cis}$	N(cis-2.6)-Trimethylpiperidine	5b	CHCh	8.7	NCH ₂ eq	311.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00	erreis		NCH ₃ ax	318.1	
N,(trans-2,6)-Trimethylpiperidine6b $CHCl_3$ CH_3OH 9.0316.5N,(cis-3,5)-Trimethylpiperidine7b $CDCl_3$ 8.9 $NCH_3 eq$ $NCH_3 ax330.4325.7NCH_3 ax330.4N,(trans-3,5)-Trimethylpiperidine8bCHCl_3CH_3OH9.0329.7CH_3OHN,(cis-2,3)-Trimethylpiperidine9bCHCl_3CH_3OH8.1Cis/cis321.1Trans/cis324.3^gCH_3OH4.7Cis/cis321.9Trans/cis324.7^g$			CH₃OH	4.5	NCH ₃ eq	310.4	-0.6
$N,(trans-2,6)$ -Trimethylpiperidine 6b $CHCl_3$ 9.0 316.5 $N,(cis-3,5)$ -Trimethylpiperidine 7b $CDCl_3$ 8.9 NCH_3 eq 325.7 $N,(cis-3,5)$ -Trimethylpiperidine 7b $CDCl_3$ 8.9 NCH_3 eq 325.7 $N,(trans-3,5)$ -Trimethylpiperidine 8b $CHCl_3$ 9.0 329.7 $N,(cis-2,3)$ -Trimethylpiperidine 9b $CHCl_3$ 8.1 Cis/cis 321.1 $N,(cis-2,3)$ -Trimethylpiperidine 9b $CHCl_3$ 8.1 Cis/cis 321.1 $Trans/cis$ 324.3^8 CH_3OH 4.7 Cis/cis 321.9 $Trans/cis$ 324.7^8 324.7^8 324.7^8					NCH3 ax	317.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N,(trans-2,6)-Trimethylpiperidine	6b	CHCl ₃	9.0		316.5	
$N, (cis-3,5)$ -Trimethylpiperidine $7b$ $CDCl_3$ 8.9 $NCH_3 eq$ 325.7 $N, (cis-3,5)$ -Trimethylpiperidine CH_3OH 4.6 $NCH_3 eq$ 327.1 -7.1 $N, (trans-3,5)$ -Trimethylpiperidine $8b$ $CHCl_3$ 9.0 329.7 $N, (cis-2,3)$ -Trimethylpiperidine $9b$ $CHCl_3$ 8.1 Cis/cis 321.1 $N, (cis-2,3)$ -Trimethylpiperidine $9b$ $CHCl_3$ 8.1 Cis/cis 321.1 $Trans/cis$ 324.3^8 CH_3OH 4.7 Cis/cis 321.9 $Trans/cis$ 324.7^8 324.7^8 324.7^8			CH ₃ OH	4.3		316.0	-9.5
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	N, (cis-3,5)-Trimethylpiperidine	7b	CDCl ₃	8.9	NCH ₃ eq	325.7	
$N.(trans-3,5)$ -Trimethylpiperidine 8b CH_3OH 4.6 NCH_3 eq 327.1 -7.1 $N.(trans-3,5)$ -Trimethylpiperidine 8b $CHCl_3$ 9.0 329.7 $N.(cis-2,3)$ -Trimethylpiperidine 9b $CHCl_3$ 8.1 Cis/cis 321.1 $N.(cis-2,3)$ -Trimethylpiperidine 9b $CHCl_3$ 8.1 Cis/cis 321.1 $Trans/cis$ 324.3^g CH_3OH 4.7 Cis/cis 321.9 $Trans/cis$ 324.7^g			<u>eu eu</u>		NCH ₃ ax	330.4	
N. (trans-3,5)-1rimethylpiperidine 8b $CHCl_3$ 9.0 329.7 CH_3OH 4.6 332.8 -8.9 N. (cis-2,3)-Trimethylpiperidine 9b $CHCl_3$ 8.1 Cis/cis 321.1 Trans/cis 324.3 ^g CH_3OH 4.7 Cis/cis 321.9 Trans/cis 324.7 ^g		a-	CH ₃ OH	4.6	NCH ₃ eq	327.1	-7.1
$N.(cis-2,3)-Trimethylpiperidine \qquad 9b \qquad CHCl_3 \qquad 8.1 \qquad Cis/cis \qquad 32.8 \qquad -8.9 \\ M.(cis-2,3)-Trimethylpiperidine \qquad 9b \qquad CHCl_3 \qquad 8.1 \qquad Cis/cis \qquad 321.1 \\ Trans/cis \qquad 324.3^g \\ CH_3OH \qquad 4.7 \qquad Cis/cis \qquad 321.9 \\ Trans/cis \qquad 324.7^g \end{cases}$	IV, (trans-3,5)-1rimethylpiperidine	8b	CHCl ₃	9.0		329.7	
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	N (sis 2.2) Taim schedule sittle	0.	CH ₃ OH	4.6	Cirli	332.8	-8.9
$CH_{3}OH \qquad 4.7 \qquad Cis/cis \qquad 324.3^{8}$ $Trans/cis \qquad 324.7^{8}$	IV, (cis-2,3)-1 rimethylpiperidine	Уb	CHCl ₃	8.1	Cis/cis	321.1	
$\frac{4.7}{\text{Trans/cis}} = \frac{321.9}{324.78}$			СН-ОН	Δ 7	i rans/cis	324.38 271 Q	
			C113011	7.7	Trans/cis	324.78	

Amine		Solvent ^a	Concn ^b	lsomer ^c	$\delta^{15} \mathbf{N}^{d}$	$\Delta\delta(\mathrm{H^+})^{e}$
N,(trans-2 3)-Trimethylpiperidine	10b	CHC13	8.1	NCH ₃ eq	318.7	
				NCH3 ax	324.5 <i>8</i>	
		CH3OH	4.7	NCH ₃ eq	319.4	
				NCH ₃ ax	325.98	
N,3,3-Trimethylpiperidine	11b	CHC13	7.7		329.0	
		CH3OH	4.0		331.4	-7.3
N,4,4-Trimethylpiperidine	12b	CHCl ₃	7.9		327.8	
		CH3OH	4.4		328.7	
N,2,2,6,6-Pentamethylpiperidine	13b	CHC ₁₃	7.9		305.3	
•••		CH3OH	4.1		302.9	-15.6
N-Methyl-2-azaadamantane	14b	CHCl ₃	7.9		320.0	
•		CH ₃ OH	4.9		320.0	-11.3
N-Methyl-trans-decahydroquinoline	15b	CHC ₁₃	10.7	NCH ₃ eq	319.7	
				NCH ₃ ax	325.8	
		CH ₃ OH	5.1	NCH ₃ eq	320.4	-4.3
				NCH ₃ ax	327.2	
N-Methyl-cis-decahydroguinoline	16b	CHCl ₃	9.5	N inside	325.5	
		-		N outside	321.3	
		CH3OH	5.0	N inside	327.8	-7.6
		5		N outside	322.2	
N-Methyl-8-(e)-methyl-trans-decahydroguinoline	17b	CHCla	5.7		327.8	
		CH ₃ OH	5.0		330.6	
N-Methylpyrrolidine	18b	CHCla	11.3		317.6	
		CH ₃ OH	4.9		319.5	-10.7
N-Ethylpiperidine	19	CHCl	8.2		320.0	
511		CH3OH	4.2		319.8	-2.2
N-lsopropylpiperidine	20	CHCl	9.0		314,4	
		CH ₃ OH	4.2		313.0	-5.0
3-Methylauinolizidine	21	CHCI	12.1	3-CH ₃ ea	313.8	
				3-CH ₃ ax	318.8	
		CH3OH	5.1	3-CH3 ea	313.7	
				3-CH ₃ ax	320.0	
Quinuclidine	22	CH3OH	4.0		342.3	-13.7

Table I (Continued)

^{*a*} Unless otherwise indicated, $CHCl_3/CH_3OH$ corresponds to 82 mol % $CHCl_3$, 18 mol % CH_3OH . ^{*b*} Mol % of solute. ^{*c*} Stereoisomer corresponding to specified configuration of *N*-methyl group where two isomers were observed, the major one is listed first. ^{*d*} The ¹⁵N shift of the amine hydrochloride upfield from 1 M H¹⁵NO₃ in D₂O. ^{*e*} Protonation shift of amine in methanol, produced by adding 1 equiv of HCl. ^{*f*} 80 mol % CH₃OH, 20 mol % CHCl₃. ^{*g*} Peak assignments are interchangeable.

Table II. ¹⁵N/¹³C Shift Correlation Parameters of Amine Hydrochlorides

Amine hydrochlorides	Solvent	Slope ^a	Intercept ^b	r	N ^c
Secondary piperidines	CHCl ₃	1.114	357.773	0.976	9
	CHCl ₃ /CH ₃ OH ^d	1.227	362.192	0.993	14
	CH ₃ OH	1.362	369.801	0.993	17
Tertiary piperidines	CHCl ₃	1.113	363.299	0.987	24
	CH ₃ OH	1.389	374.432	0.992	22

^{*a*} Opposite signs were used for the ¹⁵N shifts (upfield from HNO₃) and for the ¹³C shifts (downfield from Me₄Si), so the slope is positive. ^{*b*} Intercept on the ¹⁵N axis, δ^{13} C 0. ^{*c*} Number of compounds in the correlation. ^{*d*} 82 mol % CHCl₃, 18 mol % CH₃OH.

of pyrrolidine (18a), and N-methylpyrrolidine (18b) do correlate in the same way as those of the piperidines,² their hydrochlorides show very large deviations from the ¹⁵N/¹³C correlation line of the piperidine hydrochlorides (Table III). The reason for this may be connected with the observation that the ¹³C shifts of the β carbons of pyrrolidine have unusual protonation shifts.⁷

The solvent, concentration, and counterion effects on the ^{15}N chemical shifts of piperidine salts are rather complex. Some general trends, such as the upfield shifts in methanol and small, but relevant, changes of the slopes of the $^{15}N/^{13}C$ correlation lines, are evident from Tables I and II. Structural effects on the solvent shifts are reflected in the solvent dependence of the additive shift parameters (Table IV). A more

extensive treatment of solvent effects on ¹⁵N chemical shifts of saturated amines and their salts will be provided later.⁹

The correlation of the ¹⁵N chemical shifts of the free amines with corresponding carbon shifts was, in many cases, complicated by fast nitrogen inversion of N-methylated piperidines.² Protonation slows such inversion sufficiently so that separate signals for both epimers could be observed. The slope of the ¹⁵N/¹³C shift-correlation line of the main group of Nmethylpiperidines (1.82) was slightly different from the slope of the secondary amines (1.90), or of the minor group of tertiary amines (1.97) which are expected to have a high preference for the equatorial N-methyl conformation.² If these differences in slope are connected with the axial-equatorial Nmethyl equilibrium, they suggest an increased population of

Table III. Deviations from Least-Squares Line of ${}^{15}N/{}^{13}C$ Shift Correlations of Amines and Hydrochlorides ^a

			Hydrochlorides					
					CHCl ₃ /		Ami	nese
Amine		$\delta^{13}C^{b}$	lsomer	CHCl ₃	CH ₃ OH ^d	CH3OH	$\overline{C_6H_{12}}$	CH ₃ OH
Piperidine	19	27.4			27	- 23	0.7	0.6
2-Methylnineridine	29	36.1		0.5	0.9	1.5	0.03	-0.1
3-Methylpiperidine	39	26.9		0.9	0.5	0.6	0.05	-0.2
4-Methylpiperidine	20 20	26.7		1 0	1.8	1.8	0.4	0.4
cis-2 6-Dimethylnineridine	50	45.0		1.7	0.3	-0.1	-1.5	-1.2
trans-2,6-Dimethylpiperidine	5a 60	43.0			0.3	-0.02	1.5	00
ais 3.5 Dimethylpiperidine	0a 70	71.7		_0 2	-1.0	-1.2	-0.5	_1.3
trans 3.5 Dimethylpiperidine	7.4 9.0	20.0		-0.2	-1.0	-1.2	-0.3	-0.4
ais 2.3 Dimethylpiperidine	0a 0a	21.1		-0.8	-1.9	-0.9	27	0.4
trans 2.3 Dimethylpiperidine	7a 10a	26.4		-0.5	-0.7	-0.9	0.1	
2.2. Dimethylaineridiae	10a	30.4		-0.5	0.7	0.5	0.1	0.2
4.4. Dimethylpiperidine	11a	22.9		-0.0	-1.0	-1.0	-0.0	-0.3
2.2.6.C. Tetra methoda in anidian	128	27.0		2.0	1.4	1.5	1.5	1.1
2,2,0,0-1 etramethylpiperiune	158	22.1			-1.4	-1.5	5.0	2.0
z-Azaduaniantane	14a 15o	247			0.02	-0.05	-0.6	0.4
irans-Decanydroquinonne	158	34.7			-0.02	-0.03	-0.0	
Cis-Decanydroquinoine	10a	29.0			-0.6	-0.7	- 3.0	
8-(e)- Methyl- <i>trans</i> -decanydroquinoine	1/2	31.0		()		-1.0	-2.2	2 1 9
Pyrrolidine N. Mathylpiporidine	102	20.1		-0.28		-/.1*	-0.03*	-2.18
N 2 Dimethylpiperidine	10	33.4	T	1.8		1.1	0.1	0.5
N,2-Dimethylpiperiaine	20	39.9	I rans	0.5		0.7	0.4	0.4
N 2 Dimethologia subling	21	34.8	Cis	0.1		-0.2	0.5	0.02
N,3-Dimethylpiperiaine	30	33.1		0.04		-0.6	0.5	-0.02
N/ 4 Dimensional discussion	46	27.4	i rans	-0.9		0.2	0.4	0.7
v,4-Dimethylpiperiaine	40	32.9	i rans	1.1		0.3	-0.4	-0.2
	~1	30.5	Cis	0.8		0.6	0.0	0.2
(v, (cis-2,6)-1 rimetnyipiperiaine	50	40.5	NCH ₃ eq	-0.2		0.6	-0.8	-0.3
N((,	a	39.8	NCH ₃ ax	-0.9		-1.2	0.5	()
N (<i>trans</i> -2,6)-1 rimethylpiperidine	60	41.9	NOU	-0.2		-0.2	8.5	6.3
iv, (cis-3,5)-1 rimethylpiperiaine	/ D	33.0	NCH ₃ eq	-0.9		-1.5	-0.1	-0.4
	01	28.9	NCH ₃ ax	-0.7		1.1.0	0.24	0.04
N, (Trans-3,5)-1 rimethylpiperidine	80	26.8	<u><u> </u></u>	-3.88		-4.45	-0.2^{n}	-0.2^{n}
(V, (cis-2,3)-1 rimethylpiperiaine	90	37.5	Cis/cis	-0.5		-0.4		
A(x) = 2 - 2 = 2 T is a labor of the second labor	101	33.7	I rans/cis	-2.35		-3.95	1.5	
N, (Irans-2,3)-1 rimethylpiperidine	IUD	39.5	NCH ₃ eq	-0.6		-0.2	1.5	
	111	34.0	NCH ₃ ax	-1.0		-1.5	0.24	0.44
V, 3, 3- 1 rimethylpiperidine	110	28.0		-2.55		-3.3*	-0.3"	0.4 "
N,4,4-1 rimethylpiperidine	120	32.8 50.0/		1.0		-0.2	-0.9	12.2
N Marked 2 and demonstrate	130	20.07		-2.4		-2.1	17.0	13.3
N-Methyl-2-azaadamantane	140	39.4	NCU	0.5		0.3	10.4	7.8
IV-Methyl-trans-decanydroquinonne	150	38.4	NCH ₃ eq	-0.9		-0.8	-0.03	-0.6
N/ N/ state to the day series the	176	34.0	NCH ₃ ax	0.3		0.01 5.09	0.54	0.74
N-Methyl-cis-decanydro-;quinoline	100	30.0*	N Inside	-4.48		-3.0*	0.5"	-0.2"
N Mashad 9 (a) mashad summa Janahadan and - Para	176	31.2	in outlae	-0.6		-0.0	1.2	
/v-Methyl-8-(e)-methyl- <i>trans</i> -decanydroquinoline	1/0	26.6		- 5.98		-6.95	1.3	0.2
/v-Methylpyrrolidine	180	35.4		-6.38		-5.85	0.7	-0.3
/v-Etnyipiperiaine	19	40.0		1.9		1.8	-0.2	0.5
/v-isopropyipiperidine	20	44.9*	2 CU .	1.1		0.9	4.1	3.9
3-Metnyiquinolizidine	21	43.5	3-CH ₃ eq	-1.1		-0.3	-0.2"	
		239.2/	3-CH ₃ ax	-0.9		0.03	0.2"	
Quinuclidine	22	24.4				1.8	/.0	

 ${}^{a} {}_{\delta}{}^{15}N(experimental) - {}^{15}N(experimental) - {}^{15$

the axial N-methyl conformation for piperidines with 2,6 substituents.¹⁰ Because for the amine hydrochlorides we can correlate the shifts of the particular stereoisomers with different configurations at nitrogen and not an equilibrium mixture as with the amines, it is expected and found that for the salts the correlation lines for tertiary and secondary derivatives are parallel in the same solvent.

A possible difficulty in making ${}^{15}N/{}^{13}C$ shift correlations, as has been done here, is whether or not the conformational equilibria between the possible chair conformations of the salts are equal, or at least similar, to those of the corresponding hydrocarbons. Thus, is the equilibrium constant for the in-

terconversion of the *cis*-1,2-dimethylpiperidinium salt conformations unity, as it is for *cis*-1,2-dimethylcyclohexane?

No data appear to be available which indicate the positions of such equilibria for piperidine salts undergoing ring inversion. We have assumed, for the ${}^{15}N/{}^{13}C$ shift correlations and for the substituent-parameter calculations (see below), that these equilibria are close to 1:1 ratios expected for the analogous methylcyclohexanes of the hydrochlorides of *cis-N,2-, trans-N,3-*, and *cis-N,4-*dimethylpiperidines (**2b, 3b, 4b**). That the assumption is reasonable is indicated by the relatively small deviations of the ${}^{15}N$ shifts of these hydrochlorides from correlation lines (Table II).

	Piperidine h	vdrochlorides ^b				
Parameter ^a	eter ^a CHCl ₃ CH ₃ OH		Piperidines ^c	Cyclohexanes ^d		
Base shift	+329.7(0.2/28)	+335.0(0.2/28)	+337.0	-27.0		
aeq	-2.3(0.2/19)	-5.9(0.3/16)	-2.2	-6.0		
aax	$+3.9(0.3/8)^{e}$	$+0.3(0.3/8)^{e}$	+20.2	-1.4		
Beq	-12.0(0.2/11)	-13.2(0.2/13)	-17.8	-9.0		
Bax	-8.4 (0.3/7)	-9.0	-5.4		
γ^{eq}	-1.3 (0.1/28)	+0.5	-0.1		
γ^{ax}	+4.5 ((0.2/13)	+10.3	+6.4		
$\alpha \beta^{f}$	+4.3 ((0.2/22)	$+5.3 (\alpha^{eq}\beta^{eq})$	$+2.5 (\alpha^{eq}\beta^{eq})$		
			$+13.5 \left(\alpha^{eq} \beta^{ax} \right)$	$+2.9 \left(\alpha^{eq} \beta^{ax} \right)$		
				$+3.4 \left(\alpha^{ax} \beta^{eq} \right)$		
γ^{gem}	-1.2 (0.3/4)	-3.7	-2.0		

Table IV. Substituent Parameters for Correlation of the ¹⁵N NMR Shifts of Piperidines and Piperidine Hydrochlorides and ¹³C NMR Shifts of Cyclohexanes

^a The same symbols are used as for the carbon parameters of cyclohexanes in ref 4b. ^b Standard deviation and number of occurrences in parentheses. Positive numbers represent upfield shifts. ^c Values from ref 2, not obtained by multilinear regression in cyclohexane as solvent. ^d Reference 4b. ^e The difference between α^{eq} and α^{ax} is the same for both solvents. The number of independent α parameters is therefore three: α^{eq} (CH₃OH), α^{eq} (CHCl₃), and $\Delta \alpha^{eq} \alpha^{ax}$. ^f This parameter is zero if both substituents are axial.

The axial/equatorial N-methyl equilibria of the 2,6-substituted piperidine hydrochlorides deserve special comment. ¹H and ¹³C NMR spectra show that the equilibrium position changes in favor of the conformation with axial N-methyl if the number of equatorial substituents on α carbons is increased.^{3,11} The equilibrium mixture of N.(cis-3,5)-trimethylpiperidine hydrochloride (**7b**) contains about 5% of the axial N-methyl epimer, while for N.(cis-2,6)-trimethylpiperidine hydrochloride (**5b**), which crystallizes as pure equatorial isomer, the equatorial/axial ratio is about 65:35 in so-

 Table V. Substituent Parameters for Correlation of ¹⁵N NMR

 Shift Changes Resulting from Protonation of Piperidines

Parameter	Value ^a	Deviation	N^b
Base shift	-3.1	0.3	21
α^{eq}	-2.1	0.4	11
Beq	+4.1	0.4	7
β^{ax}	+0.5	0.8	2
γ^{eq}	-0.8	0.3	9
γ^{ax}	-4.1	0.5	5
$\alpha^{eq}\beta^{eq}$	-2.1	0.5	5
$\alpha^{eq}\beta^{ax}$	-6.8	1.1	1
γ^{gem}	+2.0	0.7	_ 2

^{*a*} Positive represents an upfield shift. $^{b}N =$ number of occurrences.

lution. One possible explanation lies in the differences in nonbonded interactions for diequatorial and axial-equatorial-gauche interactions of vicinal substituents on six-membered rings. If so, then, in solutions of N.(trans-2,6)-trimethylpiperidine hydrochloride (**6b**), the conformer with an axial N-methyl group should have a population of much more than 35%. The interactions of the N-methyl group with the α -methyl groups change from diequatorial to two axialequatorial interactions going from the trans to the cis isomer of **5b**. For **6b**, there is one diequatorial and one equatorial-axial interaction with equatorial N-methyl groups and one equatorial-axial for the isomer with axial N-methyl. The interac-

Table VI. PC NMR Chemical Shifts of Some Piperidine Hydrochlorides (ppm Downfield from Me4Si and CHCl ₃ Solution

Compd		lsomer	NCH ₃	C(2)	C(6)	C(3)	C(5)	C(4)	CCH ₃	
N-Methylpiperidine	1b		43.7	54.6	54.6	22.9	22.9	21.2		
N,2-Dimethylpiperidine	2b	Trans	40.9	61.2	55.9	31.5	23.2 <i>ª</i>	22.4 <i>ª</i>	17.8	
		Cis	36.6	56.6	50.7	27.3	20.4	18.9	13.7	
N,3-Dimethylpiperidine	3b	Cis	43.8	60.5	54.2	29.1	22.8	29.9	18.7	
		Trans	41.1	58.3	52.8	25.3	18.3 <i>ª</i>	31.1	18.2 <i>ª</i>	
N,4-Dimethylpiperidine	4b	Trans	43.7	54.6	54.6	31.1	31.1	28.4	21.0	
		Cis	41.3	50.4	50.4	27.6	27.6	25.3	18.3	
N _• (cis-2,6)-Trimethylpiperidine	5b	N-CH3 eq	36.6	62.3	62.3	32.0	32.0	22.7	18.4	
		N-CH ₃ ax	24.4	59.6	59.6	25.1	25.1	22.6	17.7	
N. (trans-2,6)-Trimethylpiperidine	6b		37.8	56.6	55.3	29.9	28.4	17.24 <i>ª</i>	17.19 <i>ª</i>	12.1
N. (cis-3,5)-Trimethylpiperidine	7b	N-CH3 eq	43.7	60.0	60.0	28.8	28.8	39.0	18.5	
		N-CH₃ ax	40.2?	57.1	57.1	24.4	24.4			
N.(trans-3,5)-Trimethylpiperidine	8b		44.6	60.6	58.7	27.2 <i>ª</i>	24.1 <i>ª</i>	35.7	18.7	18.1
N,3,3-Trimethylpiperidine	11b		44.7	64.2	54.5	31.1	19.9	34.5	29.4	24.5
N,2,2,6,6-Pentamethylpiperidine	13b		29.0	63.8	63.8	37.0	37.0	16.1	28.9	21.0
N-Methyl-2-azaadamantane	14b	N-CH3 eq	39.6	55.5	55.5	33.8	33.8	25.0 <i>ª</i>	35.1(C-δ)	
		N-CH ₃ ax				28.4	28.4	24.4 <i>ª</i>		

^a Shift assignments interchangeable.

Figure 4. ¹³C chemical shifts of N-methyl groups in cyclic amines.

tions of the axial N-methyl group with the ring carbons should be similar for both **5b** and **6b**. While for **5b** the base-catalyzed nitrogen inversion is sufficiently slow to allow the observation of separate NMR signals, the competing fast ring inversion of **6b** leads to averaged signals and thwarts simple determination of the position of equilibrium by measurement of signal intensities.

6b (N-methyl axial)

However, the nitrogen-15 chemical shift and the carbon-13 chemical shift of the N-methyl group of 6b suggest a high proportion of the equatorial conformation. The argument follows: With regard to the ¹⁵N chemical shift, in both chloroform and methanol, this shift correlates well with the experimental C2 carbon shift (41.9 ppm) of 1-cis-2-trans-3trimethylcyclohexane, where the diequatorial-axial conformation is expected to be favored by about 9:1 over the diaxial-equatorial conformation. If the calculated ¹³C shift of the diaxial-equatorial conformation of this 1,2,3-trimethylcyclohexane isomer (39.5 ppm) is used for the $^{15}N/^{13}C$ shift correlation of N₁(trans-2,6)-trimethylpiperidine hydrochloride (6b), the deviation of the ¹⁵N shift from the correlation line goes from -0.2 ppm (nitrogen scale) to 2.8 (CHCl₃) and 3.5 ppm (CH₃OH). The ¹³C chemical shift of the N-methyl group of **6b** compared with the shifts of the two epimers of N- methyl-2-(a)-methyl-*trans*-decahydroquinoline hydrochloride^{8b} (Figure 4) also indicates a strong preference for the conformation with equatorial N-methyl. Thus, the ¹³C shift of 37.8 ppm for the piperidine salt, **6b**, is much closer to the ¹³C shift of the equatorial N-methyl isomer of the conformationally fixed decalin (38.6 ppm) than to that of the axial epimer (35.7 ppm). If **6b** favors the equatorial position for the N-methyl, it seems possible only to conclude that the relatively high percentage of axial N-methyl group in solutions of N.(*cis*-2,6)-trimethylpiperidine hydrochloride (**5b**) must be the result of other than steric interactions. A very recent report^{11d} suggests that the real cause is solvent interactions with the acidic NH proton.

The 56¹⁵N chemical shifts of piperidine and N-methylpiperidine hydrochlorides in chloroform and methanol, excluding the values of 2,2,6,6-tetramethylpiperidine hydrochloride (13a), and its N-methyl derivative, 13b, were used to calculate a set of additive substituent parameters by means of a multilinear regression analysis similar to the one done by Grant and co-workers^{4b} for the ¹³C chemical shifts of cyclohexanes. Nine independent substituent parameters, three of them duplicate to account for solvent effects, were needed to correlate all of the shifts. The values, mean deviations, and the number of occurrences of each parameter are listed in Table IV together with the values found for the free bases² and the ¹³C shifts of cyclohexanes. The addition of other parameters, e.g., δ parameters, or the differentiation of the $\alpha\beta$ parameter into $\alpha^{eq}\beta^{eq}$, $\alpha^{eq}\beta^{ax}$, and $\alpha^{ax}\beta^{eq}$ parameters did not afford significant improvement of the correlation. The overall correlation coefficient of the linear regression analysis was 0.9976, and the standard deviation of the calculated shifts 0.5 ppm. The substituent parameters for the ¹⁵N chemical shifts of piperidine hydrochlorides are in general smaller than the ones found for the free bases and are much closer to the values of the parameters describing the substituent effects on ¹³C chemical shifts of cyclohexanes. Notably different from the carbon parameters are the downfield effects of equatorial γ -methyl groups and the small upfield γ^{ax} parameter.

If both the ¹⁵N chemical shifts of the amines and their hydrochlorides can be described by sets of additive substituent parameters, the same should be possible for the protonation shifts listed in Table 1. The correlation is, however, expected to be less good, because the errors of two different measurements are involved. In making the correlation, where protonation leads to two epimeric salts, the epimer corresponding to the major conformation of the amine was taken to determine the protonation shift. The nine parameters needed to describe 23 protonation shifts in methanol are listed in Table V. The correlation coefficient was 0.9886 and the standard deviation 0.7 ppm. The generally negative (downfield) protonation shift is increased by α and γ substituents but decreased or changed to upfield by β carbons. The orientation dependence of substituent effects on the protonation shifts is particularly important. Axial β carbons have a smaller effect than equatorial β carbons, but axial γ carbons have a bigger influence than equatorial γ carbons. The effect on the ¹⁵N chemical shifts of free amines with carbon-carbon bonds antiperiplanar to the lone pair is the cause of the large $\alpha^{eq}\beta^{ax}$ shift parameter for protonation of such compounds.

A number of 13 C chemical shifts of *N*-methylpiperidine hydrochlorides were measured in this work and are listed in Table VI. The peak assignments were made by means of signal intensities, off-resonance decoupling, and by applying qualitatively the additivity rules found for methylcyclohexanes.^{4b}

Acknowledgments. We wish to thank Professor M. Allen for providing a very useful computer program doing least-squares multilinear regression analysis, and Professor K. L. Williamson for preparing and measuring the shifts of 8-(e)-methyltrans-decahydroguinoline. We are also indebted to Dr. André Gagneux of Ciba-Geigy AG, Basel, who provided a sample of 2-azaadamantane, to Professor Robert T. LaLonde of the College of Environmental Science and Forestry, State University of New York at Syracuse, for the sample of 3-methylquinolizidine, and to Dr. D. K. Dalling of the University of Utah for calculations of ¹³C chemical shifts of decalins.

References and Notes

- (1) Supported by the National Science Foundation, and by the Public Health Service, Research Grant GM-11072 from the Division of General Medical Sciences.
- (2) R. O. Duthaler, K. L. Williamson, D. D. Giannini, W. H. Bearden, and J. D. Roberts, J. Am. Chem. Soc., 99, 8406 (1977).
- Y. Kawazoe, M. Tsuda, and M. Ohnishi, Chem. Pharm. Bull, 15, 51 (3)(1967)
- (4) (a) D. K. Dalling and D. M. Grant, J. Am. Chem. Soc., 89, 6312 (1967); (b)

ibid., 94, 5318 (1972); (c) ibid., 95, 3718 (1973); (d) J. B. Stothers, ''Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972; (e) G. E. Maciel and H. C. Dorn. *Org. Magn. Reson.*, 6, 178 (1974); (f) D. K. Dalling, Ph.D. Thesis, University of Utah, 1970; (g) G. E. Maciel and H. C.

- (5) M. Witanowski and G. A. Webb, "Nitrogen NMR", Plenum Press, New York, N.Y., 1973, pp 1–39. (6) G. A. Webb, private communication.
- (7) I. Morishima, K. Yoshikawa, K. Okada, T. Yonezawa, and K. Goto, J. Am. Chem. Soc., 95, 165 (1973).
- (a) J. E. Sarneski, H. L. Surprenant, F. K. Molen, and C. N. Reilly, *Anal. Chem.*, **47**, 2116 (1975); (b) E. L. Eliel and F. W. Vierhapper, *J. Org. Chem.*, 41, 199 (1976).
- R. O. Duthaler and J. D. Roberts, submitted for publication
- (10) (a) F. A. L. Anet, I. Yavari, I. J. Ferguson, A. R. Katritzky, M. Moreno-Mañas, and M. J. T. Robinson, J. Chem. Soc., Chem. Commun., 399 (1976); (b) P. J. Crowley, M. J. T. Robinson, and M. G. Ward, Tetrahedron, 33, 915 (1977).
- (11) (a) J. C. N. Ma and E. W. Warnhoff, Can. J. Chem., 43, 1849 (1965); (b) Y. Kawazoe and M. Tsuda, Chem. Pharm. Bull, 15, 1405 (1967); (c) H. Booth and J. H. Little, J. Chem. Soc., Perkin Trans. 2, 1846 (1972); (d) E. L. Eliel, C.-Y. Yen, and G. Z. Juaristi, Tetrahedron Lett., 2931 (1977).

Steric and Electronic Effects on ¹⁵N Chemical Shifts of Saturated Aliphatic Amines and Their Hydrochlorides¹

Rudolf O. Duthaler and John D. Roberts*

Contribution No. 5654 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91125. Received August 20, 1977

Abstract: Natural-abundance ¹⁵N NMR chemical shifts of saturated aliphatic primary, secondary, and tertiary amines and their hydrochlorides have been measured in different solvents. Good linear correlations of these ¹⁵N shifts with the ¹³C shifts of carbons in the same positions in the corresponding hydrocarbon analogues were only found for the primary compounds. The degree of correlation between ¹⁵N and ¹³C shifts decreased successively with secondary to tertiary amines and their hydrochlorides. Despite this, sets of solvent-dependent additive shift parameters were derived which give reasonably satisfactory agreement between calculated and experimental shifts of all of the amines and hydrochlorides. Some of the substituent-induced shifts appear to be conformational effects and can be compared with substituent effects observed previously for cyclic amines. The generally downfield protonation shifts could also be correlated with empirical substituent parameters.

I. Introduction

In previous reports on the natural-abundance ¹⁵N spectra of saturated amines, it was shown that the nitrogen chemical shifts of primary and secondary amines could be correlated with a set of additive substituent-effect parameters.² Also, it was found that for a variety of saturated acyclic compounds the ¹³C chemical shifts of a particular carbon could be correlated with the ¹⁵N shifts of primary and secondary amines of corresponding structures where nitrogen replaces the particular carbon.2a

More recently, the ¹⁵N chemical shifts of methyl-substituted secondary and tertiary piperidines^{3a} and their hydrochlorides^{3b} were shown to be well described by substituent-shift parameters which have a close parallel to the parameters derived for calculation of ¹³C chemical shifts of methylcyclohexanes.⁴ Separate linear ¹⁵N-shift correlations with the ¹³C shifts of the hydrocarbon analogues were demonstrated for the secondary and the tertiary piperidines and some related compounds. The tertiary amines were different from the secondary amines in being split into a minor and a major group having different $^{15}N/^{13}C$ correlation lines. There were also some tertiary amines which showed large deviations from either correlation line. The discrepancies were related to a stereoelectronic shift effect associated with having the lone pair on nitrogen antiperiplanar with respect to one or more carbon-hydrogen bonds

on the α carbons. Protonation was found to cancel this stereoelectronic effect and resulted in a change of the slopes of the $^{15}N/^{13}C$ shift-correlation lines from 1.9 (for the free amines in cyclohexane) to 1.1 (for the hydrochlorides in chloroform) and 1.4 (for the hydrochlorides in methanol). Furthermore, protonation diminished the upfield displacement of the correlation line of the tertiary amines from the correlation line for secondary amines from 12.5 ppm (free amines in cyclohexane) to 3.5 ppm (hydrochlorides in methanol). Most secondary and all tertiary piperidine hydrochlorides had downfield protonation shifts in methanol. The ¹⁵N chemical shifts of tertiary amine hydrochlorides with gauche γ -carbon substituents as well as pyrrolidine and N-methylpyrrolidine hydrochlorides showed substantial deviations from the $^{15}N/^{13}C$ shift-correlation lines.

In the present research, the studies of shift correlations of natural-abundance ¹⁵N NMR of saturated cyclic amines have been further extended to aliphatic primary, secondary, and tertiary amines. A priori, one might expect results similar to those for the cyclic amines, especially because quite useful ¹³C substituent-effect parameters have been developed for aliphatic hydrocarbons.⁵ The principal difficulty to be expected lies in the fact that the conformational equilibria of saturated amines are different from those of the analogous hydrocarbons. Thus, the preferred conformation of propylamine around the C1-C2 bond is gauche, while for butane, the anti conformation is fa-